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A NEW TECHNIQUE FOR CALCULATING
REENTRY BASE HEATING

SUMMARY

A theoretical analysis of the laminar base flow field of a two-dimensional reentry

body has been formulated using Telenin's method. The numerical method divides the

flow domain into horizontal strips along the x-axis and represents the flow variables as

Lagrange interpolation polynomials in the vertical coordinate. The complete Navier-Stokes

equations are used in the near wake region, and the boundary layer equations are applied

elsewhere. The boundary conditions consist of the flat plate thermal boundary layer in

the forebody region and the near wake profile in the downstream region. The resulting

two-point boundary value problem of 33 ordinary differential equations is then solved by

the multiple shooting method using 12 segments.

The theoretical aspects of the convergence of the present scheme are discussed

thoroughly and are compared to the successful convergence of a smaller system; i.e. the

two-dimensional, two-phase stagnation point flow solution. The unsatisfactory

convergence of the present study, which is attributed to two shortcomings in the

formulation, can be improved if the following two steps are taken. First, a variable

transformed coordinate should be incorporated to allow different stretching in various

segments such that the instabilities encountered can be avoided. Secondly, the Lagrange

interpolation polynomials should be replaced by other forms of polynomials or analytic

functions to remove the mathematical singularity at the rear stagnation point.

The specific case considered in this report is that of vehicle reentry at zero angle

of attack in a Mach 11 free stream with Reynolds number Reo,H ranging from

0.8 X 105 to 1.2 X 10s. The base wall temperature remains constant at 255' K (460f R)

and the free stream temperature is 217.430 K (392.280 R). It was assumed that heat

conductivity and viscosity are linearly proportional to temperature, the specific heat is

constant, and the Prandtl number is unity. The detailed flow field and thermal

environment in the base region are presented in the form of temperature contours, Mach

number contours, velocity vectors, pressure distributions, and heat transfer coefficients on

the base surface. The maximum heating rate was found to be always on the centerline,

and the two-dimensional stagnation point flow solution was adequate to estimate this

value as long as the local Reynolds number could be obtained.

INTRODUCTION

With the introduction of reusable space vehicles, such as the Space Shuttle,

minimum weight and reusability have become more important factors. To design the base

region thermal protection system so that an undue weight penalty is not assessed to the

I



vehicle, an accurate prediction of the reentry base region thermal environment is
required. In addition for the case of the Space Shuttle orbiter, an accurate definition of
the reentry base environment is required because the main engine nozzles are situated in
the base region and are exposed to trapped recirculating gases during reentry. The
purpose of this study is to provide a better understanding of the base separated flow
region during reentry so that a more accurate reentry base thermal environment can be
obtained.

Atmospheric reentry involves total temperature and Mach number conditions that
cannot be effectively simulated experimentally. Numerical schemes which can yield
accurate solutions without requiring large storage capacity and long execution time for
computers are desirable. One such scheme established by Telenin and Tinyakov [1]
exploits the obvious numerical advantages of working with Cauchy-type problems for the
present elliptic system of equations. It was first proposed for axisymmetric blunt body
problems and later adopted for conical flow problems by Holt and Ndefo [2]. It is well
known that Cauchy's problems are in general improperly posed for an elliptic system of
equations. However for an a priori restricted class of solutions (such as the class of
bounded analytic functions), Cauchy's problems become correctly posed for the elliptic
systems. Mathematically this means that to solve an elliptic system of equations by
hyperbolic means would necessarily introduce the limitation that the solution can only be
obtained in certain classes of functions, and the solution for this hyperbolic system exists
only when the flow domain does not contain any discontinuities. Since the new
hyperbolic system is arbitrary, in other words no characteristics exist, the integration of
equations can be performed in any direction. Physically this is the process that allows the
disturbances to propagate freely over the entire flow domain.

Assume that the base region is composed of the base wall and two protruding
shrouds (Fig. 1). The cavity walls, the free mixing layer, and the near wake region define
the bounded domain wherein Telenin's scheme applies. The Navier-Stokes and boundary
layer equations are transformed so that the region of interest becomes a rectangle that is

*t( x)

0 *b(X )

Figure 1. Physical sketch of a two-dimensional Space Shuttle base region.
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subsequently divided into strips along the shrouds; Lagrange interpolation polynomials of
degree four and seven are applied in the cavity and the near wake region across the strips.
Augmented first-order ordinary differential equations are obtained. The problem is then
reduced to a two-point boundary value problem.

Errors committed in the arbitrary trial data increase exponentially with the
number of trial variables and the physical dimension of the integration domain, so
Telenin's scheme is not immune to instability. This is especially true in the present case,
because an almost singular layer, i.e. the base wall thermal boundary layer, exists right at
the initial point. Because of the high flow variable gradients there, the errors introduced
by inaccurate guessing of the initial values are amplified so rapidly that integration
cannot be carried through this region. Such instability, which often appears in dealing

with nonlinear problems, is the major difficulty in applying Telenin's scheme. To handle
this problem, the common simple shooting method is inadequate. The parallel or multiple
shooting method proposed by Keller [3] and later developed by Bulirsch [4] is found
effective in overcoming the instability. In essence the multiple shooting method reduces
the integration domain length by subdividing the flow domain into a number of
segments; each segment is treated by the simple shooting method. The guessed initial
values are corrected iteratively by solving a linear system to satisfy the overall boundary
conditions on both ends and to eliminate the discontinuities occurring at the segment
junction points.

There are several important advantages of the present scheme over a
finite-difference type computation. It occupies one or two orders of magnitude smaller
storage space; it consumes at least two orders of magnitude less computer time per
iteration; the analyticity of the solution is guaranteed; and the equations are satisfied
exactly on the strips. A simple estimate is given to support these assertions. The storage
required for the present scheme is only that for storing variables at the intersection

points of the strips and the segments; it is one or two orders of magnitude smaller than
the number of grid points for the finite-difference scheme. The computation time for the
present scheme is needed for the following three types of operations:

1. Integration of N (number of variables) - S (number of strips) • M (number

of segments) equation.

2. Integration of M " (N - S)2 variational equations.

3. Inversion of MN " S by N - S matrices.

The number of operations for one iteration is then approximately M3 N3 S'
+ M(NS + N2 S2 )F (number of integration step) or =108 with M = 12, N = 7,
S = 7, and F = 10. The total computation time per iteration is about 102 seconds,

while a finite-difference scheme would have to invert an MNSF by MNSF matrix or

about M3 N3 S3 F operations or 106 seconds per iteration.

3



FORMULATION OF THE PROBLEM

As shown in Figure 1, the origin is set at the bottom corner of the base wall andthe region of interest is surrounded by the base wall, the boundary layers on bothshrouds, and the near wake region. The basic equations are the continuity equation, theNavier-Stokes equations, and the energy equation.

- (pu) + (pv) = 0ax ay1)

au a u + a au [(2u 2x ay ax ax ax 3 "

S(au a(2)
ay L\ay ax (2)

Sav av ap2
pu V + [ (2

a u ax 
(3)a xI y ax A(3)

aT aT) u ap ap a(kaT )  a aT)
Cp u- + p = u + v + k T + -(k -x ax ay xax ayk ay /

+ p 2a 2+ ay2

- ( i) 2  
(4)

P = pRT 
(5)

Nondimensionalize all flow variables by their corresponding free stream values,and pressure is made dimensionless by pc,U 2 
. We assume that the gas is ideal, thespecific heat is constant, the Prandtl number is unity, and the viscosity and heat

conductivity are linearly proportional to the temperature. Transforming the region ofinterest from the physical plane to the ~, r plane which is defined by
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x

y - ' b(X)
I' t(x) - Ib(X)

where TIt(x) and 'Ib(x) are top and bottom boundary layer edges, the region of interest

becomes a rectangle bounded by 7 = 0 , 4 = 1q , = 0 and the near wake region

(Fig. 2). Replacing the first order derivatives by

a =H v

substituting these into equations (1) through (4), carrying out the transformation
according to

a 1 a

ay H a7

II ,SHROUDS
BASE WALL NEAR WAKE

II BOUNDARY

= 0

Figure 2. Construction of strips and segments
on transformed plane.
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and rearranging, we obtain:

up = ( + 7()up? - pe - pnv - pv , (6)

4 T2 T 4 T + 
2 T

3 Re -( + 77) p77 3Re ymp3 Re k M 7 Re 9 + MP

+ pue 2 + pvun + M pfo 2
7 M,

1 [2
- Re 3 SP(2e. - v,,) + T,(u,, + o)

+ T(ur + , (7)

T o_ = (" + l) o + puoa 2 + pvv T + (pT + pT)
Re e M200

2- [T (2v - er) + T(2v - e)]

- Re [P(u + o 2) + TE ] (8)

uT 2p + puO 2 + pv T - (pUg 2 + vTpvT + pvT,

1 1
Re Pr 2 2 Re Pr (TT I)1

+ (Re T4 (C22 + -v 2_V 7 ) + ( + U )2] (9)
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ut = ( + 7 )u + E (10)

vt = (;+ r )v + a , (11)

T = ( + )T7 + f , (12)

d H = tan [v(Mb) - v(Mbo)] (13)

d Ht(x) -Nb(x) = tan [v(Mto) - v(Mt)] T- (14)

where subscripts t and '7 denote d/d and a/a7. v(M) is the Prandtl-Meyer function.

The subscripts b and bo indicate bottom boundary layer edge conditions at

arbitrary t and at t = 0 ; similar conditions on the top boundary are denoted

by t and to . We shall divide the domain of interest into S-1 strips, as shown in

Figure 2, and approximate the flow variables in terms of Lagrange interpolation

polynomials across the strips; i.e.

u(/ , ) Ui(O

V(Q , 7 ) vi(O

S S (7 -a k)
T() , ) L Ti() - (15)

i=1 k= 1 k)

S,) i() ki

GQ '7) G'Q

These expressions are substituted into equations (6) through (12) with the requirement

that the resulting equations be satisfied identically on each line 7i . An approximating

system of 7S first-order ordinary differential equations is then obtained for the

approximate values u i , vi ,  i, Ti , ei, i, and i of the dependent variables on

the S lines; i. = constant. For the present case S = 7 and the ni's are 1, 0.95, 0.90,

0.85, 0.73333, 0.61667, and 0.5.
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Error Growth in the Boundary Layer

The major difficulty encountered in carrying out the present computation was the
instabilities. Gilinskiy and Telenin [5] showed that an error caused by the approximation
of flow variables by Lagrange interpolation polynomials across the strips may oscillate
along the strips in the linear case. In present nonlinear systems, the error not only
oscillates but grows rapidly to the neighboring strips. To cope with this, the author
relied upon two fundamental tools, the boundary layer equations and the multiple
shooting method; the latter will be discussed in the next section.

The entire flow domain of interest was first conceived to be governed by the
Navier-Stokes equations (6) through (14) so that the problem could be treated through a
unified point of view. However this treatment experienced tremendous problems of
instability because the uniform validity of the Navier-Stokes equations practically breaks
down when dealing with a problem of extremely nonuniform grids. For high Reynolds
number flows with a large separation bubble, the boundary layer equations are more
feasible for the high gradient areas. Although this will limit the accuracy of the solution
to less than 1/Re there, the instability problem can be avoided partially.

The problem of error propagation in the base wall boundary layer is of special
importance because almost all the physical processes in determining the base flow heat
transfer properties occur there and in the free shear layers. The governing equations for
flow can also be regarded as the error propagation equations, since without knowing the
solution a priori the guessed initial values may contain an error of their own magnitude.
We shall focus our attention upon the error growth of the heating rate across the base
wall boundary layer. The following equation gives the growth rate of 0 CC aT/ax at

0 along the strip:

j (T + t)0 - 2 - ( - )M~, PrTo2

+ Re Pr F (p ,T, e,o,) (16)

The last term on the right side can be neglected if boundary layer equations are used;
however, if it is retained on the Navier-Stokes equations, rapid error amplification caused
by this term will occur since the initial values cannot always be chosen so as to guarantee
the last term's smallness. The second and third terms are dominant then and remain to be
negative; this will therefore reduce the danger of divergence. The approximate solution of
the above equation can be represented by the following relation:

2 1 tan

S /( - 1)M~ r T 2 - 1)M Pr T 2

8



I I I I I
so that 3 will decrease when increases; B.L.I I IB.L. I

in other words the integration is stable.
Similar analyses can also establish the fact
that in shear layers the error is amplified I I I I
slower by boundary layer equations than I

B.L. N.S. IN.S. B.L. B.L. B.L.
by Navier-Stokes equations. Based upon
this result, we shall use boundary layer I
equations on base wall, shrouds, and in I I I I '
free shear layers and Navier-Stokes I I
equations in the remaining regions. This
mathematical model is depicted in Figure 3. Governing equations and segmen-
Figure 3. tation of the base flow regions.

Boundary Layer Equations

In the base wall thermal boundary layer, equations (11) and (12) are
supplemented by the following governing equations:

1 + ) , (18)

4 4
- T e = 3 T(r + ~?f)eT + Re(pue + pvur)

- P(2e" - v- oT - T , (19)

T 2 TRe a = ( + r To) Re aI + pua 2 
+ pVV?

Re ) Re

+ (pT + pT) Re(20)
yM 7 7 Re

M. 1
Re Pr = (r + r77) RePr 3, + pugP + pvT,7

S- v(pT) - 2 - )M Ta 2  , (21)
7  Re Pr Re
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pulu¢ = (7 + Qn)(pu + p u) - uPt - (p17 + pvq) (22)

In the forebody thermal boundary layer and shear layer downstream of the shrouds
the following set of equations is applied:

pu 2ut = pul( + n)u 7 - pvu T + PlUl( 2 U1l

+ Re (Tu? + Tu) ,77 (23)

puS2 Tt = pu (r + n )Tn - pvT, - (y -1)M0 u02Pllu l

1 ( - )M+ Re Pr (TT )7 + Re )M T(u )2  (24)

pT = pT , (25)

ea, ,1  = 0 (26)

Substituting relation (15) into equations (18) through (22) and equations (23)
through (26), we obtain an approximating system of 7 X 4 first order ordinary
differential equations for the base wall thermal boundary layer, 7 X 4 equations for the
forebody boundary layer, and 7S equations for the shear layer. Along the
strip 7 = 74 in segment 3, where the Navier-Stokes equations are applied on and below
it and the boundary layer equations are applied above it, the vertical derivatives are
calculated by using the same seventh order Lagrange interpolation polynomials so that
the vertical derivatives are continuous across this strip. In the first two segments, the
vertical derivatives are computed separately by two fourth order Lagrange interpolation
polynomials in the forebody boundary layer and in the flow underneath the shroud.

With the present formulation, all the following physical phenomena have been
taken into consideration: (1) the interaction between the inviscid flow and the viscous
flow is defined by the free interaction equations (13) and (14) along the external edge of
the viscous layers; (2) the interaction between the shear layer and the recirculating core is
accounted for by enforcing the continuity of the flow variables and their vertical
derivatives 3/an across the strip in segment 3; (3) the upstream propagation of pressure
wave through the shear layer near the trailing edge of the shroud is implicitly included
through the application of Navier-Stokes equations in the near wake region (segments 2

10



and 3) and the iterative numerical scheme; and (4) the existence of the base wall thermal

boundary layer is explicitly formulated using the boundary layer equations along the base

wall. If the validity of these equations is questioned near the upper left corner

underneath the shroud in segment 1, because of the nature of the boundary conditions

applied there, either the Navier-Stokes or the boundary layer equations would yield

approximately the same results.

To employ the present scheme, we should remember that no singularity can be

allowed in the domain of interest except right at the segment junction points where the

Poincard analysis can be carried out in advance. From equations (23) and (24) it is clear

that the rear stagnation point is a singular point of the differential equations in segments

4 though 11. Since the location of the rear stagnation point is not known a priori, it

poses a serious problem, because during the iteration this point may emerge in the

integration domain such that the integral curves near it contain errors of an unacceptable

magnitude. This difficulty can be avoided if the Lagrange interpolation polynomials are

replaced by other forms of analytic functions; however the advantage of having the

ordinary differential equations written in explicit form is lost. We will pursue only the

solutions upstream of the rear stagnation point.

Boundary Conditions

Initial Thermal Boundary Layers. External to the shrouds, boundary conditions

correspond to the solutions of forebody thermal boundary layers. Assuming no separation

is ahead of the shroud trailing edge, the solutions of the compressible boundary layer

past a flat plate are applied. With Prandtl number equal to unity, we have

Te 1 + 1 M2 1 Tw- Tad u . (27)

Near Wake Solutions. The downstream boundary condition is a near wake profile

obtained by extrapolating Kubota's* far wake solution upstream. Defining x , y as the

coordinates after a Stewartson-Illingworth transformation and with the origin set at the

neck, we have

-2
y

u A 4x
1 - e

Ue

* Kubota, T.: Laminar Wake With Streamwise Pressure Gradient, GALCIT Hypersonic

Research Project. Internal Memorandum No. 9, May 1962.
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h B 4x
- 1 + e (28)

he V

where

1 Re P. u.e M

2 7 p u, H e) at neck

1 RePr St + e Ue
St 7I . u. CpTt H at neck

and 0 is the momentum thickness. Since the external flow is represented by the
Prandtl-Meyer solution in the. present study, the neck condition corresponds to that when
the flow is parallel to the centerline. For the present problem, with M, = 11,
the Mea t neck = 9.586 . The total heat loss of the flow past the vehicle is estimated by

neglecting the base heat transfer and assuming the vehicle length is 20 times the base
height, so that the Stanton number is taken to be -0.0856155. The (0/H)at neck was
put equal to 0.0618602 and *It/H = 0.6389918. Figure 4 shows the near wake profiles.

NUMERICAL PROCEDURES - MULTIPLE SHOOTING METHOD
AND CONTINUATION METHOD

A serious shortcoming of the shooting method becomes apparent when the
differential equations amplify the errors so rapidly that divergence occurs before the
initial value problem can be completely integrated. This may happen even though
accurate guesses are made for the initial values. The multiple shooting method can
frequently circumvent the difficulty, or else a finite difference scheme can be employed.
The method is essentially a combination of difference scheme and initial value problems.
It is designed to suppress the growth of the errors in the trial integral curves by dividing
the domain of integration into a number of subintervals, integrating each individual initial
value problem over its own interval, and then simultaneously adjusting all the guessed
initial data to satisfy the boundary conditions and continuity conditions at the junction
points.

The formulation of the multiple shooting method can be found in Osborne [6],
and a comprehensive version was given by Bulirsch [4]. For completeness and
convenience in discussing the continuation method later, it will be mentioned briefly
here.

12
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Figure 4. Near wake boundary profiles.

For a given boundary value problem,

y f )(29)

and

r[I (a) ,_(b)] = 0 (30)

with a < < b , and and r are vectors of NS components. We divide the domain of

Yj

interest a < < b into M - 1 subintervals, guess a set of initial values Y = Yj2 for

Y.5
jN

every interval j = 1 M - 1, and we have a set of initial value problems

13
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= f( , y) (31)

) = Y , j= 1, ... ,M -1 . (32)

In general the function values i(Qj+l , Yj) resulting from solving this system of equations

do not match with the assumed Yj+l values at j+l , so there exists the jump

h = j+l ,Y) - Yj+ , j= 1 , 2, ... ,M-2 (33)

and

hM-1 = r[Y1 "Y(M ,YM-1)]  (34)

If we can find a set of initial values such that all hj's and hM- l' are equal to zero, then

the problem is solved. To find this solution consider the set of equations hj as functions

of Yj and Yj+I, hj(Yj, Yj+I) * 0 .We seek a value for AYj such that hj(Yj + AYj,

Yj+ + AYj+I) = 0. Taking a Taylor's expansion around Yj and Yj+I , we have

ah.
hj(Yj Yj+ 1 ) + GjAYj + AYj+ 0 , j= 1 , . M-2

' ayj+l ,

and

ar ar
hM-I(Y1 'M-1) aa Y + a M- 0 (35)

where

aY(Wj+l Y j)

14
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aYj+ 1

and

ar ar W(M YM-1 )

ar 8r
Defining A = -, B = b we have the following linear system to solve for

y aYb

the correction vector A Y :

G1  -I o0 AY hl

G2  -I A Y2 h2

S =- . (36)

GM-2 -I

A BGM_ YM-1 hM_1

This matrix consists of M - 1 blocks and each block is of the order NS ; the order of the
system is NS X (M - 1). It is noteworthy that Bulirsch [4] showed that this system can
be reduced to a set of NS X NS linear systems. Multiplying the jth block
by BGM- 1 ... Gj+ 1 for j = 1, ... , M-2 and the M-1 block by I and adding, we

have for the unknown vector AY, ,

EAYI = R , (37)

where E = A + BGM- 1 ... G 1 and -R = hMl + BGM-1 hM-2 + ... + BGM-l ...

G2 GI. This linear system is solved by Gauss-Jordan elimination and the AY j's are

obtained subsequently by simple matrix multiplications;

AYj+ 1 = hj + GjAY , j , . , M - 1 (38)
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Common modified Newton's method computes the initial values Yj(+ 1)
after V iterations by

y.(2+l) () () Ay (i) , j=l , ... ,M-l,and 0 < ( ) < 1

however, constant X(Q) for all Yji's, i = 1 , . . . , NS would only allow a few variables

to change while refraining the rest from varying. To accelerate the convergence, we found

that a diagonal matrix j( ) was more effective here. Bulirsch [4] gave a detailed

description of numerical computations of the matrix G 's and the application of

Broyden's technique [7]; these will not be iterated here. The following brief discussion of
the convergence of the shooting method given by Meng [8] however will be included for
completeness.

Let r and j be the boundary conditions and the unknown vector; therefore, the
convergence sphere and rate of convergence for the shooting method are

(1 - 1-2ho )oho

and

(2ho) 2 2- 1 no/2 - 1

with the Jacobian matrix G,

II GII < Bo

.NS 2ri K

j~s=1  j s

for all i's,

II G- r II < o  ,

16



II r II = max I r I
I<i<NS

NS
IIG II= max I Gik I

1<i<NS k=l

and Q is the number of iterations counted after the initial values fall within the

convergence sphere. By the Kantorovich theorem [91, the convergence is guaranteed as

long as ho = Bo70oK is smaller or equal to one-half. For simple problems, convergence

can often be obtained by simply going through many iterations. In complex problems,

one has to modify the guessed values to fulfill as many of the Kantorovich sufficient

conditions as possible for convergence. Ironically, the labor required.to make such a test

is NS times more than that needed for solving the problem itself. For example, the

quantity K needs integration of

MNS(N 2 S 2 + 2NS-1)/2 equations o 6
throughout the entire domain so that the

advantage of working with the Cauchy-type o 3

problem will be greatly diminished. Since 0
the Kantorovich ho cannot be obtained -_

economically for the present problem, to 0

illustrate how the multiple shooting method <

converges according to the theorem, we 0 -3 - - LOG,0 ERROR
carried out a two-phase stagnation point W
flow solution. This was a smaller system of w - L06 10 ho

-6
seven equations and four subintervals; the 0

Euclidean error norm and ho are presented J
in Figure 5. One finds that the method does -9 1 2 4 5 6 7
converge. Even the first guess falls outside NUMBER OF ITERATIONS
the convergence sphere; as soon as it hits

inside the sphere, the convergence is

reached. Figure 5. Error norm and Kantorovich ho-

The subdivision of the domain for the multiple shooting method is determined by

the relation 14j+l - ji ~ , if all the derivatives are Lipschitz continuous so that a
j

stable integration can be guaranteed. In selecting this Lipschitz constant Lj, it is clear

that the maximum row in the matrix Gj,

N
Boj = max I Gik

l<i<N k= 1 ik

17



is a measure of maximum local error growth resulting from small perturbations at the
initial point of the subinterval j. Direct substitution of this value of Bo to determine

the domain length, i.e. A Bj Bo , however does not yield a practical answer for the

multiple shooting method. Because the value of B is quite large in nonlinear problems,
for example, it is of the order of 106 for the base wall boundary layer and of 10' for
the downstream regions. Therefore in theory, about 103 or 106 subintervals to insure
against the instability are required, but in practice the advantage of the Cauchy-type
problem will be offset if the number of subintervals becomes comparable to the number
of the grids by the difference scheme. This dilemma can be resolved by incorporating the
continuation method developed by Roberts and Shipman [10] with the multiple shooting
method. They employed the simple shooting method and stretched the domain length to
the final length in each iteration to solve a problem which could not be solved by the
shooting method alone. It was shown [9] that the method will be stable if the stretched1-

length is bounded by 2MKBj ; M is the uniform bound of the derivatives

over [j , j+l new and

K = max aG max +aYjiE<I aYjs aYjk
l<i<N js l<i<N k,s=1 js jk

However it is found that one should not continue the segment length this way in practice
either because the denominator is very large, ~0(101o ), but should find the Ajnew by

jMKBe 2 wB
jnew = jold(MKBoj)old/MKBoj)new, once one can have a stable integration over

the Atold. By the present experience, Atjnew = AtjoldBjold/Bjnew was found

adequate in stretching the domain length during each iteration.

In summary by applying Broyden's correction technique, the convergence factor,
and the continuation method to the multiple shooting method, the present problem was
solved using 12 subintervals during the first few iterations. In following iterations closer
to the convergence, the number of segments was reduced to eight without any effect
upon the stability.

Finally it should be noted that the success of the present iteration scheme relies
heavily upon the accuracy of the integration routine; a seventh order Runge-Kutta
scheme with stepsize control established by Fehlberg [l1] was hence applied in thepresent analysis.
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RESULTS AND DISCUSSION

The present problem is reduced to a system of 33 equations after applying the

symmetry condition along the centerline and the interaction equation along the shear

layer. The computation was conducted on a UNIVAC 1108 computer. The program

occupies a 54K storage space. In initial trials six segments were employed, and the

convergence appeared poor. Later double precision and 12 segments were used; this

improved the convergence. The bulk of the computation time was spent in generating the

Jacobian matrix, nearly 5 minutes each time; however by employing Broyden's technique,

the time was reduced to 12 minutes to complete four iterations. The Jacobian matrix was

first computed every five iterations with Broyden's technique applied accordingly; the

solution yielded obvious errors. It appeared that the method produces the best result if

the Jacobian matrix is computed every three iterations.
M

The Euclidean error norm Z I h 12 and the variation of the smallest element in

j= 1
the diagonal matrix X( Q) are shown in Figure 6. The error decreases steadily for the first

o- LOG10o ERROR

4 - LOG 10 CONVERGENCE
FACTOR

3- o o - LOG 10  ERROR OF FREE -2
BOUNDARY VALUE .
PROBLEM u.

o
0 A A A - -A A

W= W

0>

o
A 8 0 0 0 0 o8 go oo 0

0- A -5

-1 II -6

1 3 5 7 9 11 13 15 17 19 21 23

NUMBER OF ITERATIONS

Figure 6. Euclidean error norm and convergence factor versus iteration.
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13 iterations then oscillates, and the convergence factor shows similar features. This lack
of convergence was conjectured primarily because of fixing the segment lengths by the
considerations of stability alone, as was outlined previously. Since each set of differential
equations applied in different segments has its own physical capabilities or limitations to
generate certain flow patterns, the associated segment lengths over which these equations
are integrated would therefore play an important role in achieving convergence. Based
upon this the first three segment lengths were then treated as additional unknowns; hence
the system was augmented to 36 equations, and the problem was solved as a multiple
free broundary-value problem. The convergence is improved (Fig. 6), although the
oscillation still persists. The final segment configuration indicates that the base wall
boundary layer thickness equals 0.07478H, the two Navier-Stokes equation segments are
of 0.004784H and 0.01118H respectively followed by eight boundary layer equation
segments of 0.16H each. The segment lengths vary little with the free stream Reynolds
number. The continuation method which was mentioned in the last section succeeded in
stretching the whole domain length from 0.2H to 0.68H smoothly.

The evolution of the velocity vector and the temperature contour through
iterations to satisfy the boundary conditions and continuity across the subintervals are
shown in Figures 7 through 9 for a Reynolds number of 10s . The initial velocity vector
plot of the forebody boundary layer revealed no turning action around the edge of the
shroud, because the pressure drop had not propagated upstream. It is seen that there are
discontinuities across the intervals and significant interpolation errors along
y/H = 0.57 and 0.71 . After several iterations, this error diminished in magnitude while
the flow around the shroud edge began to incline towards the wall. The recirculating flow
pattern is shown clearly in Figure 9. In the initial temperature contour plot, there are
negative values of temperatures which are indicated by the blanks, and discontinuities
also exist across the intervals. The fact that the contour lines failed to be normal to the
centerline indicates that errors resulting from the Lagrange interpolation exist. In an area
near the wall, the gap between the contours is small because of the high heating rates.
The cold and hot spots emerge in Figure 9 and the profiles show little variations along
the horizontal direction throughout the near wake region. The diamond shape of the
temperature contour in Figure 9 shows that some discontinuities exist across the segment
even though the rest of the region shows quite good results. From the temperature
contour plots, it is clearly seen that because of the small flow velocities in the base wall
boundary layer, the heat is transferred almost entirely by the conduction process and the
flow convects the heat generated in the shear layer to the compression region and
recirculates it back along the centerline. The effects of the protruding shrouds upon the
base thermal environment would be to pull the pressure rise and high heat flux occurring
in the recompression region away from the base wall so that the heating problems to the
base wall and engines are reduced.

Since the plot routines pick up values only at equal vertical intervals, the flow
variables on the shear layer edge are often missed in the temperature contours and
velocity vector plots. The edge Mach number and pressure distributions are given in
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FREE STREAM MACH NO. = .1100+02 REYNOLDS NUMBER = .1000+06 FREE STREAM TEMPERATURE = .3923+03
UPPER SHROUD EDGE MACH NO. = .1200+02 PRANDTL NUMBER = .1000+01 BASE WALL TEMPERATURE = .4600+03
LOWER SHROUD EDGE MACH NO. = .1200+02 ANGLE OF ATTACK = .0000 TOTAL TEMPERATURE = .1000+05
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Figure 7a. Velocity vector in the two-dimensional Space Shuttle base region (initial guess).
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Figure 7b. Temperature contour in the two-dimensional Space Shuttle base region (initial guess).



FREE STREAM MACH NO. = .1100+02 REYNOLDS NUMBER = .1000+06 FREE STREAM TEMPERATURE = .3923+03
IPPER SHROUD EDGE MACH NO. = .1300+02 PRANDTL NUMBER = .1000+01 BASE WALL TEMPERATURE = .4600+03
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Figure 8a. Velocity vector in the two-dimensional Space Shuttle base region (fourth iteration).



1.2 4 , I I I CONTOUR IDENT.

8 1 .250
A 2 .750

3 1.250
1.1 __c 7 4 1.750

5 2.250
6 2.750

-- .7 3.250
8 3.750

1.0 2  ___--------_2- 2 - 4.250S'3 -3 A 4.750
3 5.250

4 4--4 C 5.750
3 5 --- 5---------- D 6.250

0.9 - - 6.750
F 7.250
G 7.750

4 -4 4 H 8.250
- 5 I 8.750

0.8 9.250
0.8 ----- K 9.750

4 L 10.250
5 4- M 10.750

0.7 8 7 --------- P 12.250
6 9 Q 12.750

- . A  9 R 13.250
6 S 13.750

T 14.250
06 -- B U 14.750

7 C C ----- C V 15.250
B -.. .W 15.750

4 A X 16.250
0 5 A  A-- Y 16.7500.5 Z 17.250

0 0.05 0.10 0.15 0.20 0.25
X/H

Figure 8b. Temperature contour in the two-dimensional Space Shuttle base region (fourth iteration).



FREE STREAM MACH NO. = .1100+02 REYNOLDS NUM3ER = .1000+06 FREE STREAM TEMPERATURE = .3923+03
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Figure 9a. Velocity vector in the two-dimensional Space Shuttle base region (final iteration).
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Figure 10 for Reynolds number Reo,,H = 105 . The pressure first drops smoothly along

the forebody boundary layer and then reaches the base pressure drastically near the

trailing edge of the shroud, while the edge Mach number increases in the same manner.

The pressure distribution on the centerline is also shown in Figure 10; it is nearly

constant throughout the cavity region until near x/H = 0.1 where it begins to follow

the external pressure very closely. The Mach number at the neck, -9.587 , is also

marked in Figure 10; if the external flow were parallel to the centerline, the external

NMach number should be equal to this value. The vertical pressure distributions at various

axial locations are shown in Figure 11. The pressure in the forebody boundary layer and

downstream shear layers is nearly constant except for interpolation errors; the pressure in

the cavity on the base wall is nearly four times higher than that at the trailing edge.

At x/H = 0.1, the pressure drops drastically underneath the shroud trailing edge and the

value on the centerline is close to that on the external edge.

The heat transfer coefficients based upon the recovery temperature are shown in

Figure 12. The maximum heating rate is always on the centerline and its value increases

monotonically with the free stream Reynolds number. Detailed flow patterns for various

Reynolds numbers are given in Figures 13, 14, and 15. From the velocity vector plots of

Figures 13a, 14a, and 15a, we can find that the shroud edge Mach number varies slightly

and monotonically with the free stream Reynolds numbers and the vector plots are quite

similar even though the convergence was poorer for higher Reynolds numbers. The

17 -. 55
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Figure 10. Mach number and pressure distribution
along the shear layer edge.
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Figure 11. Vertical pressure profiles at various axial locations.

temperature contours show that the dia-
1.00- mond shape discontinuity disappears for

the lower Reynolds number case. The
Mach number contour is also shown for
the Re, H = 0.87 X 10' case in Figure
13c. It is seen that the major portion of

Y/H 1.2x105 the recirculating core is subsonic, the
1.1 x 105  sonic line extends from the wake into the

.66 - 1.0 x 105 forebody boundary layer, and external to
0.8x10 5  it the viscous layer is entirely supersonic.

The subsonic region in the forebody
boundary layer is very thin so that only

.50 few upstream propagating waves can
0 1.48 2.96 be transmitted through this viscous

0 hx10 5 (caI/cm2  secoK) layer. This explains the weak upstream
10 3a sinfluence observed in the experimental

0 1.0 2.0 3.0 study of near wakes by Batt and Kubota
h x 106 (Btu/ft 2 - sec - OR) [12]. The fact that a significant portion

of the viscous layer is supersonic also
confirms that the imbedded shocks will

Figure 12. Heat transfer coefficient emerge deeply in the viscous region as was
on base wall versus Y/H. suggested by Weiss and Weinbaum [13].
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Figure 13a. Velocity vector in the two-dimensional Space Shuttle base region for Re = 0.87 X 10s .
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Figure 13b. Temperature contour in the two-dimensional Space Shuttle base region for Re = 0.87 x 10s.
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Figure 14a. Velocity vector in the two-dimensional Space Shuttle base region for Re = 1.1 X 10'.
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Figure 15a. Velocity vector in the two-dimensional Space Shuttle base region for Re = 1.2 X 10s .
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Although we do not intend to dwell on the aspects of comparing the present
results to experimental data since the latter do not exist for the present flow conditions
and geometry, it is interesting to note that the present results are an order of magnitude
different from those of Larson et al. [14]. They found Nu = 100 ~ 150 for
Tw = 0.34 0.716 Tt, at M, = 3 and Reoo,H - 10' , while the present study gives
Nu - 5 for Tw = 0.046 Tt, at Moo = 11 and Re.,H - 10 . The observed trend that
the base wall thermal boundary layer thickness varies with both the Reynolds number
and temperature difference between the wall and recirculation region is believed to be
correct. Figure 16 shows the value

Nu P3T.

(Taw -e (T Tw) ReooH
aw edge

obtained in comparison with the similar solution for a two-dimensional stagnation point
flow solution given by Cohen and Reshotko [15]. The values scattered around the
theoretical value -0.506 , and they reveal no strong dependence upon the local edge
Reynolds number. The two-dimensional stagnation point flow is therefore seen as a close
approximation of the base flow. Furthermore as shown by v/U. versus y/H on the base
wall boundary layer edge in Figure 17, the magnitude of the vertical velocity decreases as
the Reynolds number increases, and the linear dependence upon the coordinate y/H is
true only near the centerline. For practical purposes, it can be asserted that the base flow
is a stagnation point type flow; the maximum heating rate can be derived from the
stagnation point flow results so long as the local Reynolds number can be estimated.
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/ Reedge o
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Figure 16. Comparison with the two-dimensional
stagnation point flow solution.
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1.00 For future investigations of even

.. Re = higher Reynolds number flows by the

I / 1.2 x 105 present method, the following consider-

1.1 x10 5  - - . ations should be noted. First the insta-

83 \. 1.0 x 105  b i l i t i e s e n c o u n te r e d f o r i n t e g r a t i o n a c r o s s

- .8 x 105 the base wall thermal boundary layer can

Y/ H be avoided if a variable transformed coor-

dinate is incorporated to allow different

stretching in various segments. Secondly it
.66- should again be emphasized that when

A using Lagrange interpolation polynomials

"1 in formulating a Cauchy problem, there

should exist no singularity in the flow

.50 I domain, because when such singularity

.05 0 .05 .10 emerges, the advantage of using the

v /u) Lagrange interpolation polynomials will
be lost. Replacing the Lagrange inter-

Figure 17. Velocity (v) near the edge polation polynomials by other sets of

of the base wall boundary layer. polynomials or analytic functions can

remove this singularity, but one more

matrix inversion to obtain the system of

first order differential equations would then be necessary. To include the solution

downstream of the rear stagnation point, such replacement is needed.

Although for simplicity we have concentrated on the zero angle of attack case,

extensions to skew cases offer no difficulty. The various aspects of the rate of

convergence, the storage requirement, the computation time, and the exactness of the

solution on the strips should cause one to favor the present method over many existing

schemes in dealing with high Reynolds number flows.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama, December 30, 1972
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